

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	pgmpy 0.1.0 documentation

 [image: _images/logo.png]

pgmpy

pgmpy is a Python library for creation, manipulation and implementation of
Probablistic Graphical Models (PGM).

	Uses SciPy stack and NetworkX for mathematical and graph operations respectively.

	Provides interface to existing PGM algorithms.

Getting Started

Documentation

Wiki

	Installation
	Getting the dependencies

	Installing from source

	Testing

	pgmpy API Reference
	models module

	factors module

	inference module

	independencies module

	readwrite module

	base module

	Example gallery

	GSoC 2015 Ideas
	Introduction

	Want to get involved?

	Getting Started

	Ideas

	GSoC 2014 Ideas
	Introduction

	Want to get involved?

	Getting Started

	Example

	Ideas

	Interested Students

Community

	
	Mailing List: pgmpy@googlegroups.com

	
	IRC: #pgmpy @ freenode.net

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	pgmpy 0.1.0 documentation

Installation

Getting the dependencies

Installing from source requires you to have installed

	Python3

	networkx (==1.8.1)

	numpy (==1.9.1)

	scipy (==0.14.0)

	cython (==0.21)

	pandas (==0.15.1)

	setuptools

	working C and C++ compiler

You can install all these requirements by issuing

$ [sudo] apt-get install build-essential python3-dev python3-pip
$ [sudo] pip3 install -r requirements.txt # use requirements-dev.txt if you want to run tests

On Red Hat and clones (e.g CentOS), install the dependencies using:

$ [sudo] yum -y install gcc gcc-c++ python3-devel python3-pip
$ [sudo] pip3 install -r requirements.txt # use requirements-dev.txt if you want to run tests

Or use some cross-platform binary package manager such as conda [http://conda.pydata.org/] (it is
recommended as well as the most easiest and hastle-free way)

Setup a virtual environment in conda by

$ conda create -n pgmpy-env python=3.4
$ source activate pgmpy-env

Once you have the virtual environment setup, install the depenedencies using:

$ conda install -f requirements.txt # use requirements-dev.txt if you want to run tests

Note

In order to build the documentation you will need sphinx and to run the tests you will need nose

$ [sudo] pip3 install sphinx nose

Installing from source

You can install from source by downloading a source archive file (zip) or by checking out the
source files from git source repository.

	Download the source (zip file) from https://github.com/pgmpy/pgmpy or clone the pgmpy repository:

$ git clone https://github.com/pgmpy/pgmpy
$ git checkout dev

	Unpack (if necessary) and change directory to the source directory.

	Run:

$ [sudo] python3 setup.py install

Testing

Testing requires having the nose library. After installation, the package can be tested by executing
from the source directory:

$ nosetests3

This would give you a lot of output (and some warnings) but eventually should finish without errors. Otherwise, please consider
posting an issue into the bug tracker [https://github.com/pgmpy/pgmpy/issues] or the Mailing List pgmpy@googlegroups.com .

 Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	pgmpy 0.1.0 documentation

pgmpy API Reference

models module

Directed Graphical Models

Undirected Graphical Models

factors module

	
class pgmpy.factors.FactorSet(*factors_list)[source]

	Base class of DiscreteFactor Sets.

A factor set provides a compact representation of higher dimensional factor
[image: \phi_1\cdot\phi_2\cdots\phi_n]

For example the factor set corresponding to factor [image: \phi_1\cdot\phi_2] would be the union of the factors
[image: \phi_1] and [image: \phi_2] i.e. factor set [image: \vec\phi = \phi_1 \cup \phi_2].

	
add_factors(*factors)[source]

	Adds factors to the factor set.

	Parameters:	factors: Factor1, Factor2,, Factorn :

factors to be added into the factor set

Examples

>>> from pgmpy.factors import FactorSet
>>> from pgmpy.factors import DiscreteFactor
>>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
>>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
>>> factor_set1 = FactorSet(phi1, phi2)
>>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8))
>>> phi4 = DiscreteFactor(['x5', 'x7', 'x8'], [2, 2, 2], range(8))
>>> factor_set1.add_factors(phi3, phi4)
>>> print(factor_set1)
set([<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b4ca10>,
 <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e4c393690>,
 <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b4c750>,
 <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b4cb50>])

	
copy()[source]

	Create a copy of factor set.

Examples

>>> from pgmpy.factors import FactorSet
>>> from pgmpy.factors import DiscreteFactor
>>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
>>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
>>> factor_set = FactorSet(phi1, phi2)
>>> factor_set
<pgmpy.factors.FactorSet.FactorSet at 0x7fa68f390320>
>>> factor_set_copy = factor_set.copy()
>>> factor_set_copy
<pgmpy.factors.FactorSet.FactorSet at 0x7f91a0031160>

	
divide(factorset, inplace=True)[source]

	Returns a new factor set instance after division by the factor set

Division of two factor sets [image: \frac{\vec\phi_1}{\vec\phi_2}] basically translates to union of all the
factors present in [image: \vec\phi_2] and [image: \frac{1}{\phi_i}] of all the factors present in
[image: \vec\phi_2].

	Parameters:	factorset: FactorSet :

The divisor

inplace: A boolean (Default value True) :

If inplace = True ,then it will modify the FactorSet object, if False then will
return a new FactorSet object.

	Returns:	If inplace = False, will return a new FactorSet Object which is division of :

given factors. :

Examples

>>> from pgmpy.factors import FactorSet
>>> from pgmpy.factors import DiscreteFactor
>>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
>>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
>>> factor_set1 = FactorSet(phi1, phi2)
>>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8))
>>> phi4 = DiscreteFactor(['x5', 'x7', 'x8'], [2, 2, 2], range(8))
>>> factor_set2 = FactorSet(phi3, phi4)
>>> factor_set3 = factor_set2.divide(factor_set1)
>>> print(factor_set3)
set([<DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b5ba10>,
 <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b650>,
 <DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b5b050>,
 <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e32b5b8d0>])

	
get_factors()[source]

	Returns all the factors present in factor set.

Examples

>>> from pgmpy.factors import FactorSet
>>> from pgmpy.factors import DiscreteFactor
>>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
>>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
>>> factor_set1 = FactorSet(phi1, phi2)
>>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8))
>>> factor_set1.add_factors(phi3)
>>> factor_set1.get_factors()
{<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f827c0a23c8>,
 <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f827c0a2358>,
 <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f825243f9e8>}

	
marginalize(variables, inplace=True)[source]

	Marginalizes the factors present in the factor sets with respect to the given variables.

	Parameters:	variables: list, array-like :

List of the variables to be marginalized.

inplace: boolean (Default value True) :

If inplace=True it will modify the factor set itself, would create a new factor set

	Returns:	If inplace = False, will return a new marginalized FactorSet object. :

Examples

>>> from pgmpy.factors import FactorSet
>>> from pgmpy.factors import DiscreteFactor
>>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
>>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
>>> factor_set1 = FactorSet(phi1, phi2)
>>> factor_set1.marginalize('x1')
>>> print(factor_set1)
set([<DiscreteFactor representing phi(x2:3, x3:2) at 0x7f8e32b4cc10>,
 <DiscreteFactor representing phi(x3:2, x4:2) at 0x7f8e32b4cf90>])

	
product(factorset, inplace=True)[source]

	Return the factor sets product with the given factor sets

Suppose [image: \vec\phi_1] and [image: \vec\phi_2] are two factor sets then their product is a another factors
set [image: \vec\phi_3 = \vec\phi_1 \cup \vec\phi_2].

	Parameters:	factorsets: FactorSet1, FactorSet2, ..., FactorSetn :

FactorSets to be multiplied

inplace: A boolean (Default value True) :

If inplace = True , then it will modify the FactorSet object, if False, it will
return a new FactorSet object.

	Returns:	If inpalce = False, will return a new FactorSet object, which is product of two factors :

Examples

>>> from pgmpy.factors import FactorSet
>>> from pgmpy.factors import DiscreteFactor
>>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
>>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
>>> factor_set1 = FactorSet(phi1, phi2)
>>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8))
>>> phi4 = DiscreteFactor(['x5', 'x7', 'x8'], [2, 2, 2], range(8))
>>> factor_set2 = FactorSet(phi3, phi4)
>>> print(factor_set2)
set([<DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b050>,
 <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e32b5b690>])
>>> factor_set2.product(factor_set1)
>>> print(factor_set2)
set([<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b4c910>,
 <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b4cc50>,
 <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b050>,
 <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e32b5b690>])
>>> factor_set2 = FactorSet(phi3, phi4)
>>> factor_set3 = factor_set2.product(factor_set1, inplace=False)
>>> print(factor_set2)
set([<DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b060>,
 <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e32b5b790>])

	
remove_factors(*factors)[source]

	Removes factors from the factor set.

	Parameters:	factors: Factor1, Factor2,, Factorn :

factors to be removed from the factor set

Examples

>>> from pgmpy.factors import FactorSet
>>> from pgmpy.factors import DiscreteFactor
>>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
>>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
>>> factor_set1 = FactorSet(phi1, phi2)
>>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8))
>>> factor_set1.add_factors(phi3)
>>> print(factor_set1)
set([<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b5b050>,
 <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b250>,
 <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b5b150>])
>>> factor_set1.remove_factors(phi1, phi2)
>>> print(factor_set1)
set([<DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b4cb10>])

inference module

independencies module

	
class pgmpy.independencies.Independencies(*assertions)[source]

	Base class for independencies.
independencies class represents a set of Conditional Independence
assertions (eg: “X is independent of Y given Z” where X, Y and Z
are random variables) or Independence assertions (eg: “X is
independent of Y” where X and Y are random variables).
Initialize the independencies Class with Conditional Independence
assertions or Independence assertions.

	Parameters:	assertions: Lists or Tuples :

Each assertion is a list or tuple of the form: [event1,
event2 and event3]
eg: assertion [‘X’, ‘Y’, ‘Z’] would be X is independent
of Y given Z.

Examples

Creating an independencies object with one independence assertion:
Random Variable X is independent of Y

>>> independencies = independencies(['X', 'Y'])

Creating an independencies object with three conditional
independence assertions:
First assertion is Random Variable X is independent of Y given Z.

>>> independencies = independencies(['X', 'Y', 'Z'],
... ['a', ['b', 'c'], 'd'],
... ['l', ['m', 'n'], 'o'])

	
add_assertions(*assertions)[source]

	Adds assertions to independencies.

	Parameters:	assertions: Lists or Tuples :

Each assertion is a list or tuple of variable, independent_of and given.

Examples

>>> from pgmpy.independencies import Independencies
>>> independencies = Independencies()
>>> independencies.add_assertions(['X', 'Y', 'Z'])
>>> independencies.add_assertions(['a', ['b', 'c'], 'd'])

	
closure()[source]

	Returns a new Independencies()-object that additionally contains those IndependenceAssertions
that are implied by the the current independencies (using with the semi-graphoid axioms [https://en.wikipedia.org/w/index.php?title=Conditional_independence&oldid=708760689#Rules_of_conditional_independence];
see (Pearl, 1989, Conditional Independence and its representations [http://www.cs.technion.ac.il/~dang/journal_papers/pearl1989conditional.pdf])).

Might be very slow if more than six variables are involved.

Examples

>>> from pgmpy.independencies import Independencies
>>> ind1 = Independencies(('A', ['B', 'C'], 'D'))
>>> ind1.closure()
(A _|_ B | D, C)
(A _|_ B, C | D)
(A _|_ B | D)
(A _|_ C | D, B)
(A _|_ C | D)

>>> ind2 = Independencies(('W', ['X', 'Y', 'Z']))
>>> ind2.closure()
(W _|_ Y)
(W _|_ Y | X)
(W _|_ Z | Y)
(W _|_ Z, X, Y)
(W _|_ Z)
(W _|_ Z, X)
(W _|_ X, Y)
(W _|_ Z | X)
(W _|_ Z, Y | X)
[..]

	
contains(assertion)[source]

	Returns True if assertion is contained in this Independencies-object,
otherwise False.

	Parameters:	assertion: IndependenceAssertion()-object :

Examples

>>> from pgmpy.independencies import Independencies, IndependenceAssertion
>>> ind = Independencies(['A', 'B', ['C', 'D']])
>>> IndependenceAssertion('A', 'B', ['C', 'D']) in ind
True
>>> # does not depend on variable order:
>>> IndependenceAssertion('B', 'A', ['D', 'C']) in ind
True
>>> # but does not check entailment:
>>> IndependenceAssertion('X', 'Y', 'Z') in Independencies(['X', 'Y'])
False

	
entails(entailed_independencies)[source]

	Returns True if the entailed_independencies are implied by this Independencies-object, otherwise False.
Entailment is checked using the semi-graphoid axioms.

Might be very slow if more than six variables are involved.

	Parameters:	entailed_independencies: Independencies()-object :

Examples

>>> from pgmpy.independencies import Independencies
>>> ind1 = Independencies([['A', 'B'], ['C', 'D'], 'E'])
>>> ind2 = Independencies(['A', 'C', 'E'])
>>> ind1.entails(ind2)
True
>>> ind2.entails(ind1)
False

	
get_assertions()[source]

	Returns the independencies object which is a set of IndependenceAssertion objects.

Examples

>>> from pgmpy.independencies import Independencies
>>> independencies = Independencies(['X', 'Y', 'Z'])
>>> independencies.get_assertions()

	
is_equivalent(other)[source]

	Returns True if the two Independencies-objects are equivalent, otherwise False.
(i.e. any Bayesian Network that satisfies the one set
of conditional independencies also satisfies the other).

Might be very slow if more than six variables are involved.

	Parameters:	other: Independencies()-object :

Examples

>>> from pgmpy.independencies import Independencies
>>> ind1 = Independencies(['X', ['Y', 'W'], 'Z'])
>>> ind2 = Independencies(['X', 'Y', 'Z'], ['X', 'W', 'Z'])
>>> ind3 = Independencies(['X', 'Y', 'Z'], ['X', 'W', 'Z'], ['X', 'Y', ['W','Z']])
>>> ind1.is_equivalent(ind2)
False
>>> ind1.is_equivalent(ind3)
True

	
latex_string()[source]

	Returns a list of string.
Each string represents the IndependenceAssertion in latex.

	
reduce()[source]

	Add function to remove duplicate Independence Assertions

	
class pgmpy.independencies.IndependenceAssertion(event1=[], event2=[], event3=[])[source]

	Represents Conditional Independence or Independence assertion.

Each assertion has 3 attributes: event1, event2, event3.
The attributes for

[image: U \perp X, Y | Z]

is read as: Random Variable U is independent of X and Y given Z would be:

event1 = {U}

event2 = {X, Y}

event3 = {Z}

	Parameters:	event1: String or List of strings :

Random Variable which is independent.

event2: String or list of strings. :

Random Variables from which event1 is independent

event3: String or list of strings. :

Random Variables given which event1 is independent of event2.

Examples

>>> from pgmpy.independencies import IndependenceAssertion
>>> assertion = IndependenceAssertion('U', 'X')
>>> assertion = IndependenceAssertion('U', ['X', 'Y'])
>>> assertion = IndependenceAssertion('U', ['X', 'Y'], 'Z')
>>> assertion = IndependenceAssertion(['U', 'V'], ['X', 'Y'], ['Z', 'A'])

	
get_assertion()[source]

	Returns a tuple of the attributes: variable, independent_of, given.

Examples

>>> from pgmpy.independencies import IndependenceAssertion
>>> asser = IndependenceAssertion('X', 'Y', 'Z')
>>> asser.get_assertion()

readwrite module

base module

	
class pgmpy.base.DirectedGraph(ebunch=None)[source]

	Base class for directed graphs.

Directed graph assumes that all the nodes in graph are either random
variables, factors or clusters of random variables and edges in the graph
are dependencies between these random variables.

	Parameters:	data: input graph :

Data to initialize graph. If data=None (default) an empty graph is
created. The data can be an edge list or any Networkx graph object.

Examples

Create an empty DirectedGraph with no nodes and no edges

>>> from pgmpy.base import DirectedGraph
>>> G = DirectedGraph()

G can be grown in several ways

Nodes:

Add one node at a time:

>>> G.add_node('a')

Add the nodes from any container (a list, set or tuple or the nodes
from another graph).

>>> G.add_nodes_from(['a', 'b'])

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge('a', 'b')

a list of edges,

>>> G.add_edges_from([('a', 'b'), ('b', 'c')])

If some edges connect nodes not yet in the model, the nodes
are added automatically. There are no errors when adding
nodes or edges that already exist.

Shortcuts:

Many common graph features allow python syntax for speed reporting.

>>> 'a' in G # check if node in graph
True
>>> len(G) # number of nodes in graph
3

	
add_edge(u, v, **kwargs)[source]

	Add an edge between u and v.

The nodes u and v will be automatically added if they are
not already in the graph

	Parameters:	u,v : nodes

Nodes can be any hashable Python object.

Examples

>>> from pgmpy.base import DirectedGraph
>>> G = DirectedGraph()
>>> G.add_nodes_from(['Alice', 'Bob', 'Charles'])
>>> G.add_edge('Alice', 'Bob')

	
add_edges_from(ebunch, **kwargs)[source]

	Add all the edges in ebunch.

If nodes referred in the ebunch are not already present, they
will be automatically added. Node names should be strings.

	Parameters:	ebunch : container of edges

Each edge given in the container will be added to the graph.
The edges must be given as 2-tuples (u, v).

Examples

>>> from pgmpy.base import DirectedGraph
>>> G = DirectedGraph()
>>> G.add_nodes_from(['Alice', 'Bob', 'Charles'])
>>> G.add_edges_from([('Alice', 'Bob'), ('Bob', 'Charles')])

	
add_node(node, **kwargs)[source]

	Add a single node to the Graph.

	Parameters:	node: node :

A node can be any hashable Python object.

Examples

>>> from pgmpy.base import DirectedGraph
>>> G = DirectedGraph()
>>> G.add_node('A')

	
add_nodes_from(nodes, **kwargs)[source]

	Add multiple nodes to the Graph.

	Parameters:	nodes: iterable container :

A container of nodes (list, dict, set, etc.).

Examples

>>> from pgmpy.base import DirectedGraph
>>> G = DirectedGraph()
>>> G.add_nodes_from(['A', 'B', 'C'])

	
get_parents(node)[source]

	Returns a list of parents of node.

	Parameters:	node: string, int or any hashable python object. :

The node whose parents would be returned.

Examples

>>> from pgmpy.base import DirectedGraph
>>> G = DirectedGraph([('diff', 'grade'), ('intel', 'grade')])
>>> G.parents('grade')
['diff', 'intel']

	
moralize()[source]

	Removes all the immoralities in the DirectedGraph and creates a moral
graph (UndirectedGraph).

A v-structure X->Z<-Y is an immorality if there is no directed edge
between X and Y.

Examples

>>> from pgmpy.base import DirectedGraph
>>> G = DirectedGraph([('diff', 'grade'), ('intel', 'grade')])
>>> moral_graph = G.moralize()
>>> moral_graph.edges()
[('intel', 'grade'), ('intel', 'diff'), ('grade', 'diff')]

	
class pgmpy.base.UndirectedGraph(ebunch=None)[source]

	Base class for all the Undirected Graphical models.

UndirectedGraph assumes that all the nodes in graph are either random
variables, factors or cliques of random variables and edges in the graphs
are interactions between these random variables, factors or clusters.

	Parameters:	data: input graph :

Data to initialize graph. If data=None (default) an empty graph is
created. The data can be an edge list or any Networkx graph object.

Examples

Create an empty UndirectedGraph with no nodes and no edges

>>> from pgmpy.base import UndirectedGraph
>>> G = UndirectedGraph()

G can be grown in several ways

Nodes:

Add one node at a time:

>>> G.add_node('a')

Add the nodes from any container (a list, set or tuple or the nodes
from another graph).

>>> G.add_nodes_from(['a', 'b'])

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge('a', 'b')

a list of edges,

>>> G.add_edges_from([('a', 'b'), ('b', 'c')])

If some edges connect nodes not yet in the model, the nodes
are added automatically. There are no errors when adding
nodes or edges that already exist.

Shortcuts:

Many common graph features allow python syntax for speed reporting.

>>> 'a' in G # check if node in graph
True
>>> len(G) # number of nodes in graph
3

	
add_edge(u, v, **kwargs)[source]

	Add an edge between u and v.

The nodes u and v will be automatically added if they are
not already in the graph

	Parameters:	u,v : nodes

Nodes can be any hashable Python object.

Examples

>>> from pgmpy.base import UndirectedGraph
>>> G = UndirectedGraph()
>>> G.add_nodes_from(['Alice', 'Bob', 'Charles'])
>>> G.add_edge('Alice', 'Bob')

	
add_edges_from(ebunch, **kwargs)[source]

	Add all the edges in ebunch.

If nodes referred in the ebunch are not already present, they
will be automatically added.

	Parameters:	ebunch : container of edges

Each edge given in the container will be added to the graph.
The edges must be given as 2-tuples (u, v).

Examples

>>> from pgmpy.base import UndirectedGraph
>>> G = UndirectedGraph()
>>> G.add_nodes_from(['Alice', 'Bob', 'Charles'])
>>> G.add_edges_from([('Alice', 'Bob'), ('Bob', 'Charles')])

	
add_node(node, **kwargs)[source]

	Add a single node to the Graph.

	Parameters:	node: node :

A node can be any hashable Python object.

Examples

>>> from pgmpy.base import UndirectedGraph
>>> G = UndirectedGraph()
>>> G.add_node('A')

	
add_nodes_from(nodes, **kwargs)[source]

	Add multiple nodes to the Graph.

	Parameters:	nodes: iterable container :

A container of nodes (list, dict, set, etc.).

Examples

>>> from pgmpy.base import UndirectedGraph
>>> G = UndirectedGraph()
>>> G.add_nodes_from(['A', 'B', 'C'])

	
check_clique(nodes)[source]

	Check if the given nodes form a clique.

	Parameters:	nodes: list, array-like :

List of nodes to check if they are a part of any clique.

	
is_triangulated()[source]

	Checks whether the undirected graph is triangulated or not.

Examples

>>> from pgmpy.base import UndirectedGraph
>>> G = UndirectedGraph()
>>> G.add_edges_from([('x1', 'x2'), ('x1', 'x3'), ('x1', 'x4'),
... ('x2', 'x4'), ('x3', 'x4')])
>>> G.is_triangulated()
True

 Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	pgmpy 0.1.0 documentation

Example gallery

 Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 previous |

 	pgmpy 0.1.0 documentation

GSoC 2015 Ideas

Introduction

A graphical model or probabilistic graphical model (PGM) is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. They are most commonly used in probability theory, statistics (particularly Bayesian statistics) and machine learning.

pgmpy is a Python library to implement Probabilistic Graphical Models and related inference and learning algorithms. Our main focus is on providing a consistent API and flexible approach to its implementation. This is the second year pgmpy is participating in GSoC.

Want to get involved?

If you’re interested in participating in GSoC 2015 as a student, mentor, or community member, you should join the pgmpy’s mailing list [https://groups.google.com/forum/#!forum/pgmpy] and post any questions, comments, etc. to pgmpy@googlegroups.com

Additionally, you can find us on IRC at #pgmpy on irc.freenode.org. If no one is available to answer your question, please be patient and post it to the mailing list as well.

Getting Started

	Install dependencies:

$ sudo pip3 install -r requirements.txt # use requirements-dev.txt if you want to run tests

	Clone the repo:

$ git clone https://github.com/pgmpy/pgmpy

	Install pgmpy:

$ cd pgmpy/
$ sudo python3 setup.py install

References for PGM:

	Notebooks for basic introduction of PGM and pgmpy: https://github.com/pgmpy/pgmpy_notebook

	Quick intro to Bayesian Networks: http://people.cs.ubc.ca/~murphyk/Bayes/bnintro.html

	Reference book for PGM: Probabilistic Graphical Models - Principles and Techniques [http://www.amazon.in/Probabilistic-Graphical-Models-Principles-Computation/dp/0262013193]

Ideas

1. Add feature to accept and output state names for models.

At present pgmpy internally assigns a numerical value to each state of a random variable.
For example, for a variable grade having states A, B and C, the internal representation in
pgmpy would be grade_0, grade_1 and grade_2. Also if some method needs to output a state name,
it gives the state name in this form only.
We want improve this and allow the user to work with the state names rather than the internal representations.

Expected Outcome: The user should be able to completely work with the state names (never need to use internal representation) that he has provided.

Difficulty Level: Moderate

PGM knowledge required: Basic

Skills Required: Intermediate Python

Potential Mentor(s): Ankur Ankan, Shashank Garg

2. Approximate Algorithms

At present in pgmpy, we have implementation of exact inference algorithms for various graphical models. Although inference algorithms run in polynomial time for simple graphs (such as graphs with low tree-width), they become computationally intractable for larger graphs that arise from real life problem. However there a class of algorithms that can be used to perform approximate inference on the graphical models. This project aims towards implementation of two famous approximate inference algorithms

	Linear Programming Relaxation

	Cutting Plane Algorithms

Expected Outcome: We should be able to run approximate inference algorithms on complex graphical models (used in stereo vision).

Difficulty Level: Difficult

PGM knowledge required: Very good understanding of Graphical Models and Inference Algorithms

Skills Required: Intermediate Python, Cython

Potential Mentor(s): Abinash Panda, Ankur Ankan

3. Adding support for different types of CPDs

Right now pgmpy has the feature for creating Rule CPDs and Tree CPDs but the current implementation of variable elimination or clique tree don’t accept the models if a Rule CPD or Tree CPD is associated with it. There are algorithms that are able to do inference much efficiently in the case of Rule and Tree CPDs as compared to normal Tabular CPD. Implement those algorithms.

Expected Outcome: We should be able to run inference algorithms over models having associated Rule CPD or Tree CPD.

Difficulty Level: Difficult

PGM knowledge required: Good understanding of Bayesian Models and inference algorithms.

Skills Required: Intermediate Python, Cython

Potential Mentor(s): Jaidev Deshpande, Shashank Garg

4. Adding support for Dynamic Bayesian Networks (DBNs)

Dynamic Bayesian Networks are used to represent models which have repeating pattern. It is mostly used when we are trying to create a model with time as a variable, so for each instant of time we have the same model and hence a repeating model. Currently pgmpy doesn’t have support for DBNs.

Expected Outcome: Should be able to create DBNs and do inference over it.

Difficulty Level: Difficult

PGM knowledge required: Very good understanding of PGM.

Skills Required: Intermediate Python, Cython

Potential Mentor(s): Ankur Ankan, Abinash Panda

5. Parsing from and writing to standard PGM file formats

There are various standard file formats for representing the PGM data. PGM data basically consists of a Graph, a table corresponding to each node and a few other attributes of the Graph. Here [https://github.com/pgmpy/pgmpy/issues/65] is a list of some of these formats. pgmpy needs functionality to read networks from and write networks to these standard file formats.
Currently only ProbModelXML is supported. pgmpy uses lxml [http://lxml.de] for XML formats and we plan to use pyparsing [http://pyparsing.wikispaces.com/] for non XML formats.

Expected Outcome: You are expected to choose at least one file format from the above list and write a sub-module which enables pgmpy to read from and write to the same format.

Difficulty level: Easy

PGM knowledge required: Basic knowledge about representation of PGM models.

Skills Required: Intermediate python

Potential Mentor(s): Pranjal Mittal, Shashank Garg

GSoC 2014 Ideas

Introduction

Probabilistic Graphical Models (PGM) use graphs to denote the conditional dependence structure between random variables.
They are most commonly used in probability theory, statistics (particularly Bayesian statistics) and machine learning.

pgmpy is a Python library to implement Probabilistic Graphical Models and related algorithms.
The main focus is on providing a consistent API and flexible approach to its implementation.
This is the first time pgmpy is applying for GSoC under the Python Software Foundation’s umbrella.

Want to get involved?

If you’re interested in participating in GSoC 2014 as a student, mentor, or interested community member, you should join the pgmpy’s mailing
list and post any questions, comments, etc. to pgmpy@googlegroups.com

You can also contact the mentors with your ideas.

Anavil Tripathi: anaviltripathi@gmail.com

Shikhar Nigam: snigam3112@gmail.com

Soumya Kundu: samkent.1729@gmail.com

Additionally, you can find us on IRC at #pgmpy on irc.freenode.org.
If no one is available to answer your question, please be patient and post it to the mailing list as well.

Getting Started

Reference book for PGM: Probabilistic Graphical Models - Principles and Techniques [http://www.amazon.in/Probabilistic-Graphical-Models-Principles-Computation/dp/0262013193]

pgmpy

	Install dependencies:

$ sudo pip3 install networkx numpy scipy cython

	Clone the repo:

$ git clone https://github.com/pgmpy/pgmpy

	Install pgmpy:

$ cd pgmpy/
$ sudo python3 setup.py install

pgmpy_viz

	Install dependencies:

$ sudo pip3 install django

	Clone the repo:

$ git clone https://github.com/pgmpy/pgmpy_viz

	Run local server:

$ cd pgmpy_viz/
$ python3 manage.py runserver

Go to localhost:8000 in your browser to access the pgmpy_viz page.

Example

from pgmpy.models import BayesianModel
from pgmpy.factors import TabularCPD
student = bm.BayesianModel()
instantiates a new Bayesian Model called 'student'

student.add_nodes_from(['diff', 'intel', 'grade'])
adds nodes labelled 'diff', 'intel', 'grade' to student

student.add_edges_from([('diff', 'grade'), ('intel', 'grade')])
adds directed edges from 'diff' to 'grade' and 'intel' to 'grade'

"""
diff cpd:

+-------+--------+
|diff: | |
+-------+--------+
|easy | 0.2 |
+-------+--------+
|hard | 0.8 |
+-------+--------+
"""
diff_cpd = TabularCPD('diff', 2, [[0.2], [0.8]])

"""
intel cpd:

+-------+--------+
|intel: | |
+-------+--------+
|dumb | 0.5 |
+-------+--------+
|avg | 0.3 |
+-------+--------+
|smart | 0.2 |
+-------+--------+
"""
intel_cpd = TabularCPD('intel', 3, [[0.5], [0.3], [0.2]])

"""
grade cpd:

+------+-----------------------+---------------------+
|diff: | easy | hard |
+------+------+------+---------+------+------+-------+
|intel:| dumb | avg | smart | dumb | avg | smart |
+------+------+------+---------+------+------+-------+
|gradeA| 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
+------+------+------+---------+------+------+-------+
|gradeB| 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
+------+------+------+---------+------+------+-------+
|gradeC| 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
+------+------+------+---------+------+------+-------+
"""
grade_cpd = TabularCPD('grade', 3,
 [[0.1,0.1,0.1,0.1,0.1,0.1],
 [0.1,0.1,0.1,0.1,0.1,0.1],
 [0.8,0.8,0.8,0.8,0.8,0.8]],
 evidence=['diff', 'intel'],
 evidence_card=[2, 3])

student.add_cpds(diff_cpd, intel_cpd, grade_cpd)

Finding active trail
student.active_trail_nodes('diff')

Finding active trail with observation
student.active_trail_nodes('diff', observed='grades')

Ideas

1. Parsing from and writing to standard PGM file formats

There are various standard file formats for representing the PGM data.
PGM data basically consists of a Graph, a table corresponding to each node and a few other attributes of the Graph.
Here [https://github.com/pgmpy/pgmpy/issues/65] is a list of some of these formats. pgmpy needs functionality to read networks from and write networks to these standard file formats.
Currently only ProbModelXML is supported. pgmpy uses lxml for XML formats and we plan to use pyparsing [http://pyparsing.wikispaces.com/] for non XML formats.

Expected Outcome: You are expected to choose at least one file format from the above list and write a sub-module which enables pgmpy to read from and write to the same format.

Difficulty level: Medium

PGM knowledge required: Basic knowledge about representation of PGM models.

Skills required: Intermediate python

Potential Mentor(s): Shikhar Nigam

2. Adding features to pgmpy_viz

pgmpy_viz is a web application for creating and visualizing graphical models that runs pgmpy in the back-end.
It uses cytoscape.js in the front-end for manipulation of the networks. For reference to a similar application you can look at SamIam.

This project needs you to add:

	Network validation before posting data to the server.

	Options for inference from networks.

	Porting pgmpy_viz from Django to Flask.

Expected Outcome: You are expected to design a Flask based web application which would enable the user to visualize the outcomes of analysis of the network.

Difficulty level: Medium

PGM knowledge required: None

Skills required: HTML5, CSS, JavaScript, Flask

Potential Mentor(s): Soumya Kundu

3. Implementing Markov Networks

There are two common branches of graphical representation of distributions.
They are Bayesian networks(Directed Acyclic Graphs) and Markov networks(Undirected graphs which may be cyclic).
Currently, pgmpy supports Bayesian Networks.
The following features for Markov Networks need to be implemented:

	Create and edit Markov Networks.

	Finding reduced Markov Networks.

	Finding independencies in Markov Networks.

Expected Outcome: You are expected to write a sub-module implementing the above listed features.

Difficulty level: Hard

PGM knowledge required: Good understanding of Markov Networks

Skills required: Intermediate python, Cython

Potential Mentor(s): Anavil Tripathi

4. Implementing Algorithms:

PGM involves many theorems and algorithms such as Belief-Propagation, Variable Elimination etc.
The library will eventually implement every PGM algorithm. Here is the proposed set of algorithms to be implemented.

Expected Outcome: You are expected to select at least one algorithm from the list and implement it.

Difficulty level: Hard

PGM knowledge required: Good understanding of PGM

Skills required: Intermediate python, Cython

Potential Mentor(s): Shikhar Nigam

5. Blue Sky Project

If you have any interesting ideas please discuss it over the mailing list.

Interested Students

If you are interested in participating in GSoC with pgmpy, please introduce yourself on the mailing list.

 Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	pgmpy 0.1.0 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pgmpy	

 	
 	
 pgmpy.base	

 	
 	
 pgmpy.factors	

 	
 	
 pgmpy.independencies	

 	
 	
 pgmpy.inference	

 	
 	
 pgmpy.models	

 	
 	
 pgmpy.readwrite	

 Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	pgmpy 0.1.0 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pgmpy	

 	
 	
 pgmpy.base	

 	
 	
 pgmpy.factors	

 	
 	
 pgmpy.independencies	

 	
 	
 pgmpy.inference	

 	
 	
 pgmpy.models	

 	
 	
 pgmpy.readwrite	

 Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	pgmpy 0.1.0 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | U

A

 	

 	add_assertions() (pgmpy.independencies.Independencies method)

 	add_edge() (pgmpy.base.DirectedGraph method)

 	

 	(pgmpy.base.UndirectedGraph method)

 	add_edges_from() (pgmpy.base.DirectedGraph method)

 	

 	(pgmpy.base.UndirectedGraph method)

 	

 	add_factors() (pgmpy.factors.FactorSet method)

 	add_node() (pgmpy.base.DirectedGraph method)

 	

 	(pgmpy.base.UndirectedGraph method)

 	add_nodes_from() (pgmpy.base.DirectedGraph method)

 	

 	(pgmpy.base.UndirectedGraph method)

C

 	

 	check_clique() (pgmpy.base.UndirectedGraph method)

 	closure() (pgmpy.independencies.Independencies method)

 	

 	contains() (pgmpy.independencies.Independencies method)

 	copy() (pgmpy.factors.FactorSet method)

D

 	

 	DirectedGraph (class in pgmpy.base)

 	

 	divide() (pgmpy.factors.FactorSet method)

E

 	

 	entails() (pgmpy.independencies.Independencies method)

F

 	

 	FactorSet (class in pgmpy.factors)

G

 	

 	get_assertion() (pgmpy.independencies.IndependenceAssertion method)

 	get_assertions() (pgmpy.independencies.Independencies method)

 	

 	get_factors() (pgmpy.factors.FactorSet method)

 	get_parents() (pgmpy.base.DirectedGraph method)

I

 	

 	IndependenceAssertion (class in pgmpy.independencies)

 	Independencies (class in pgmpy.independencies)

 	

 	is_equivalent() (pgmpy.independencies.Independencies method)

 	is_triangulated() (pgmpy.base.UndirectedGraph method)

L

 	

 	latex_string() (pgmpy.independencies.Independencies method)

M

 	

 	marginalize() (pgmpy.factors.FactorSet method)

 	

 	moralize() (pgmpy.base.DirectedGraph method)

P

 	

 	pgmpy.base (module)

 	pgmpy.factors (module)

 	pgmpy.independencies (module)

 	pgmpy.inference (module)

 	

 	pgmpy.models (module)

 	pgmpy.readwrite (module)

 	product() (pgmpy.factors.FactorSet method)

R

 	

 	reduce() (pgmpy.independencies.Independencies method)

 	

 	remove_factors() (pgmpy.factors.FactorSet method)

U

 	

 	UndirectedGraph (class in pgmpy.base)

 Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

 _images/math/b3fa8381fe21c816944e9786bf182e55744c32f1.png
U1 X,Y|Z

_images/math/f157b7af6d62035c720ac5e6a830fab397effdf8.png

_static/comment-close.png

_images/math/7d1ba1c31964a726c9e38e618606fea6aa9f598e.png
09

_static/comment.png

_images/math/3772a3c87c56119faee94d72ebd25cb84aca8975.png

_static/ajax-loader.gif

_images/math/0937d54168a27f74567c8c83fb65495379b98dc9.png
M1

_static/down.png

_images/math/b53391b4e19b429e0fffed2fff89320646844d00.png
5=

_images/math/21e1a2268e5a0f49ae6efb29e9a8be662b405a23.png
01 * O

_static/file.png

_images/math/90ec7c54050bf5a93f7f902f085f700c2b4133ea.png

_static/plus.png

_images/math/ba1a7389beaf2c46fcd219be64b0dd1c0237f8c1.png

_images/math/60cf1a3ad8bbc9be1705f2737c7bd107a8bc4b8a.png
b = b1 U dg

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		
 modules |

 		pgmpy 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_modules/pgmpy/base/DirectedGraph.html

 Navigation

 		
 index

 		
 modules |

 		
 modules |

 		pgmpy 0.1.0 documentation »

 		Module code »

 Source code for pgmpy.base.DirectedGraph

#!/usr/bin/env python3

import itertools

import networkx as nx

from pgmpy.base import UndirectedGraph

[docs]class DirectedGraph(nx.DiGraph):
 """
 Base class for directed graphs.

 Directed graph assumes that all the nodes in graph are either random
 variables, factors or clusters of random variables and edges in the graph
 are dependencies between these random variables.

 Parameters

 data: input graph
 Data to initialize graph. If data=None (default) an empty graph is
 created. The data can be an edge list or any Networkx graph object.

 Examples

 Create an empty DirectedGraph with no nodes and no edges

 >>> from pgmpy.base import DirectedGraph
 >>> G = DirectedGraph()

 G can be grown in several ways

 Nodes:

 Add one node at a time:

 >>> G.add_node('a')

 Add the nodes from any container (a list, set or tuple or the nodes
 from another graph).

 >>> G.add_nodes_from(['a', 'b'])

 Edges:

 G can also be grown by adding edges.

 Add one edge,

 >>> G.add_edge('a', 'b')

 a list of edges,

 >>> G.add_edges_from([('a', 'b'), ('b', 'c')])

 If some edges connect nodes not yet in the model, the nodes
 are added automatically. There are no errors when adding
 nodes or edges that already exist.

 Shortcuts:

 Many common graph features allow python syntax for speed reporting.

 >>> 'a' in G # check if node in graph
 True
 >>> len(G) # number of nodes in graph
 3
 """

 def __init__(self, ebunch=None):
 super(DirectedGraph, self).__init__(ebunch)

[docs] def add_node(self, node, **kwargs):
 """
 Add a single node to the Graph.

 Parameters

 node: node
 A node can be any hashable Python object.

 Examples

 >>> from pgmpy.base import DirectedGraph
 >>> G = DirectedGraph()
 >>> G.add_node('A')
 """
 super(DirectedGraph, self).add_node(node, **kwargs)

[docs] def add_nodes_from(self, nodes, **kwargs):
 """
 Add multiple nodes to the Graph.

 Parameters

 nodes: iterable container
 A container of nodes (list, dict, set, etc.).

 Examples

 >>> from pgmpy.base import DirectedGraph
 >>> G = DirectedGraph()
 >>> G.add_nodes_from(['A', 'B', 'C'])
 """
 for node in nodes:
 self.add_node(node, **kwargs)

[docs] def add_edge(self, u, v, **kwargs):
 """
 Add an edge between u and v.

 The nodes u and v will be automatically added if they are
 not already in the graph

 Parameters

 u,v : nodes
 Nodes can be any hashable Python object.

 Examples

 >>> from pgmpy.base import DirectedGraph
 >>> G = DirectedGraph()
 >>> G.add_nodes_from(['Alice', 'Bob', 'Charles'])
 >>> G.add_edge('Alice', 'Bob')
 """
 super(DirectedGraph, self).add_edge(u, v, **kwargs)

[docs] def add_edges_from(self, ebunch, **kwargs):
 """
 Add all the edges in ebunch.

 If nodes referred in the ebunch are not already present, they
 will be automatically added. Node names should be strings.

 Parameters

 ebunch : container of edges
 Each edge given in the container will be added to the graph.
 The edges must be given as 2-tuples (u, v).

 Examples

 >>> from pgmpy.base import DirectedGraph
 >>> G = DirectedGraph()
 >>> G.add_nodes_from(['Alice', 'Bob', 'Charles'])
 >>> G.add_edges_from([('Alice', 'Bob'), ('Bob', 'Charles')])
 """
 for edge in ebunch:
 self.add_edge(*edge, **kwargs)

[docs] def get_parents(self, node):
 """
 Returns a list of parents of node.

 Parameters

 node: string, int or any hashable python object.
 The node whose parents would be returned.

 Examples

 >>> from pgmpy.base import DirectedGraph
 >>> G = DirectedGraph([('diff', 'grade'), ('intel', 'grade')])
 >>> G.parents('grade')
 ['diff', 'intel']
 """
 return self.predecessors(node)

[docs] def moralize(self):
 """
 Removes all the immoralities in the DirectedGraph and creates a moral
 graph (UndirectedGraph).

 A v-structure X->Z<-Y is an immorality if there is no directed edge
 between X and Y.

 Examples

 >>> from pgmpy.base import DirectedGraph
 >>> G = DirectedGraph([('diff', 'grade'), ('intel', 'grade')])
 >>> moral_graph = G.moralize()
 >>> moral_graph.edges()
 [('intel', 'grade'), ('intel', 'diff'), ('grade', 'diff')]
 """
 moral_graph = UndirectedGraph(self.to_undirected().edges())

 for node in self.nodes():
 moral_graph.add_edges_from(itertools.combinations(self.get_parents(node), 2))

 return moral_graph

 © Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

_modules/pgmpy/base/UndirectedGraph.html

 Navigation

 		
 index

 		
 modules |

 		
 modules |

 		pgmpy 0.1.0 documentation »

 		Module code »

 Source code for pgmpy.base.UndirectedGraph

#!/usr/bin/env python3

import itertools

import networkx as nx

[docs]class UndirectedGraph(nx.Graph):
 """
 Base class for all the Undirected Graphical models.

 UndirectedGraph assumes that all the nodes in graph are either random
 variables, factors or cliques of random variables and edges in the graphs
 are interactions between these random variables, factors or clusters.

 Parameters

 data: input graph
 Data to initialize graph. If data=None (default) an empty graph is
 created. The data can be an edge list or any Networkx graph object.

 Examples

 Create an empty UndirectedGraph with no nodes and no edges

 >>> from pgmpy.base import UndirectedGraph
 >>> G = UndirectedGraph()

 G can be grown in several ways

 Nodes:

 Add one node at a time:

 >>> G.add_node('a')

 Add the nodes from any container (a list, set or tuple or the nodes
 from another graph).

 >>> G.add_nodes_from(['a', 'b'])

 Edges:

 G can also be grown by adding edges.

 Add one edge,

 >>> G.add_edge('a', 'b')

 a list of edges,

 >>> G.add_edges_from([('a', 'b'), ('b', 'c')])

 If some edges connect nodes not yet in the model, the nodes
 are added automatically. There are no errors when adding
 nodes or edges that already exist.

 Shortcuts:

 Many common graph features allow python syntax for speed reporting.

 >>> 'a' in G # check if node in graph
 True
 >>> len(G) # number of nodes in graph
 3
 """

 def __init__(self, ebunch=None):
 super(UndirectedGraph, self).__init__(ebunch)

[docs] def add_node(self, node, **kwargs):
 """
 Add a single node to the Graph.

 Parameters

 node: node
 A node can be any hashable Python object.

 Examples

 >>> from pgmpy.base import UndirectedGraph
 >>> G = UndirectedGraph()
 >>> G.add_node('A')
 """
 super(UndirectedGraph, self).add_node(node, **kwargs)

[docs] def add_nodes_from(self, nodes, **kwargs):
 """
 Add multiple nodes to the Graph.

 Parameters

 nodes: iterable container
 A container of nodes (list, dict, set, etc.).

 Examples

 >>> from pgmpy.base import UndirectedGraph
 >>> G = UndirectedGraph()
 >>> G.add_nodes_from(['A', 'B', 'C'])
 """
 for node in nodes:
 self.add_node(node, **kwargs)

[docs] def add_edge(self, u, v, **kwargs):
 """
 Add an edge between u and v.

 The nodes u and v will be automatically added if they are
 not already in the graph

 Parameters

 u,v : nodes
 Nodes can be any hashable Python object.

 Examples

 >>> from pgmpy.base import UndirectedGraph
 >>> G = UndirectedGraph()
 >>> G.add_nodes_from(['Alice', 'Bob', 'Charles'])
 >>> G.add_edge('Alice', 'Bob')
 """
 super(UndirectedGraph, self).add_edge(u, v, **kwargs)

[docs] def add_edges_from(self, ebunch, **kwargs):
 """
 Add all the edges in ebunch.

 If nodes referred in the ebunch are not already present, they
 will be automatically added.

 Parameters

 ebunch : container of edges
 Each edge given in the container will be added to the graph.
 The edges must be given as 2-tuples (u, v).

 Examples

 >>> from pgmpy.base import UndirectedGraph
 >>> G = UndirectedGraph()
 >>> G.add_nodes_from(['Alice', 'Bob', 'Charles'])
 >>> G.add_edges_from([('Alice', 'Bob'), ('Bob', 'Charles')])
 """
 for edge in ebunch:
 self.add_edge(*edge, **kwargs)

[docs] def check_clique(self, nodes):
 """
 Check if the given nodes form a clique.

 Parameters

 nodes: list, array-like
 List of nodes to check if they are a part of any clique.
 """
 for node1, node2 in itertools.combinations(nodes, 2):
 if not self.has_edge(node1, node2):
 return False
 return True

[docs] def is_triangulated(self):
 """
 Checks whether the undirected graph is triangulated or not.

 Examples

 >>> from pgmpy.base import UndirectedGraph
 >>> G = UndirectedGraph()
 >>> G.add_edges_from([('x1', 'x2'), ('x1', 'x3'), ('x1', 'x4'),
 ... ('x2', 'x4'), ('x3', 'x4')])
 >>> G.is_triangulated()
 True
 """
 return nx.is_chordal(self)

 © Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		
 modules |

 		pgmpy 0.1.0 documentation »

 All modules for which code is available

		pgmpy.base.DirectedGraph

		pgmpy.base.UndirectedGraph

		pgmpy.factors.FactorSet

		pgmpy.independencies.Independencies

 © Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

_images/logo.png

_modules/pgmpy/factors/FactorSet.html

 Navigation

 		
 index

 		
 modules |

 		
 modules |

 		pgmpy 0.1.0 documentation »

 		Module code »

 Source code for pgmpy.factors.FactorSet

#!/usr/bin/env python3

from pgmpy.extern.six.moves import filter, reduce
from pgmpy.factors.discrete import DiscreteFactor
from pgmpy.extern import six

[docs]class FactorSet(object):
 r"""
 Base class of *DiscreteFactor Sets*.

 A factor set provides a compact representation of higher dimensional factor
 :math:`\phi_1\cdot\phi_2\cdots\phi_n`

 For example the factor set corresponding to factor :math:`\phi_1\cdot\phi_2` would be the union of the factors
 :math:`\phi_1` and :math:`\phi_2` i.e. factor set :math:`\vec\phi = \phi_1 \cup \phi_2`.
 """
 def __init__(self, *factors_list):
 """
 Initialize the factor set class.

 Parameters

 factors_list: Factor1, Factor2,
 All the factors whose product is represented by the factor set

 Examples

 >>> from pgmpy.factors import FactorSet
 >>> from pgmpy.factors import DiscreteFactor
 >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
 >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
 >>> factor_set = FactorSet(phi1, phi2)
 >>> factor_set
 <pgmpy.factors.FactorSet.FactorSet at 0x7f8e32af6d50>
 >>> print(factor_set)
 set([<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b4c2d0>,
 <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b4c710>])
 """
 if not all(isinstance(phi, DiscreteFactor) for phi in factors_list):
 raise TypeError("Input parameters must be all factors")
 self.factors = set([factor.copy() for factor in factors_list])

[docs] def add_factors(self, *factors):
 """
 Adds factors to the factor set.

 Parameters

 factors: Factor1, Factor2,, Factorn
 factors to be added into the factor set

 Examples

 >>> from pgmpy.factors import FactorSet
 >>> from pgmpy.factors import DiscreteFactor
 >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
 >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
 >>> factor_set1 = FactorSet(phi1, phi2)
 >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8))
 >>> phi4 = DiscreteFactor(['x5', 'x7', 'x8'], [2, 2, 2], range(8))
 >>> factor_set1.add_factors(phi3, phi4)
 >>> print(factor_set1)
 set([<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b4ca10>,
 <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e4c393690>,
 <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b4c750>,
 <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b4cb50>])
 """
 self.factors.update(factors)

[docs] def remove_factors(self, *factors):
 """
 Removes factors from the factor set.

 Parameters

 factors: Factor1, Factor2,, Factorn
 factors to be removed from the factor set

 Examples

 >>> from pgmpy.factors import FactorSet
 >>> from pgmpy.factors import DiscreteFactor
 >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
 >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
 >>> factor_set1 = FactorSet(phi1, phi2)
 >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8))
 >>> factor_set1.add_factors(phi3)
 >>> print(factor_set1)
 set([<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b5b050>,
 <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b250>,
 <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b5b150>])
 >>> factor_set1.remove_factors(phi1, phi2)
 >>> print(factor_set1)
 set([<DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b4cb10>])
 """
 for factor in factors:
 self.factors.remove(factor)

[docs] def get_factors(self):
 """
 Returns all the factors present in factor set.

 Examples

 >>> from pgmpy.factors import FactorSet
 >>> from pgmpy.factors import DiscreteFactor
 >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
 >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
 >>> factor_set1 = FactorSet(phi1, phi2)
 >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8))
 >>> factor_set1.add_factors(phi3)
 >>> factor_set1.get_factors()
 {<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f827c0a23c8>,
 <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f827c0a2358>,
 <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f825243f9e8>}
 """
 return self.factors

[docs] def product(self, factorset, inplace=True):
 r"""
 Return the factor sets product with the given factor sets

 Suppose :math:`\vec\phi_1` and :math:`\vec\phi_2` are two factor sets then their product is a another factors
 set :math:`\vec\phi_3 = \vec\phi_1 \cup \vec\phi_2`.

 Parameters

 factorsets: FactorSet1, FactorSet2, ..., FactorSetn
 FactorSets to be multiplied

 inplace: A boolean (Default value True)
 If inplace = True , then it will modify the FactorSet object, if False, it will
 return a new FactorSet object.

 Returns

 If inpalce = False, will return a new FactorSet object, which is product of two factors

 Examples

 >>> from pgmpy.factors import FactorSet
 >>> from pgmpy.factors import DiscreteFactor
 >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
 >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
 >>> factor_set1 = FactorSet(phi1, phi2)
 >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8))
 >>> phi4 = DiscreteFactor(['x5', 'x7', 'x8'], [2, 2, 2], range(8))
 >>> factor_set2 = FactorSet(phi3, phi4)
 >>> print(factor_set2)
 set([<DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b050>,
 <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e32b5b690>])
 >>> factor_set2.product(factor_set1)
 >>> print(factor_set2)
 set([<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b4c910>,
 <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b4cc50>,
 <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b050>,
 <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e32b5b690>])
 >>> factor_set2 = FactorSet(phi3, phi4)
 >>> factor_set3 = factor_set2.product(factor_set1, inplace=False)
 >>> print(factor_set2)
 set([<DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b060>,
 <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e32b5b790>])
 """
 factor_set = self if inplace else self.copy()
 factor_set1 = factorset.copy()

 factor_set.add_factors(*factor_set1.factors)

 if not inplace:
 return factor_set

[docs] def divide(self, factorset, inplace=True):
 r"""
 Returns a new factor set instance after division by the factor set

 Division of two factor sets :math:`\frac{\vec\phi_1}{\vec\phi_2}` basically translates to union of all the
 factors present in :math:`\vec\phi_2` and :math:`\frac{1}{\phi_i}` of all the factors present in
 :math:`\vec\phi_2`.

 Parameters

 factorset: FactorSet
 The divisor

 inplace: A boolean (Default value True)
 If inplace = True ,then it will modify the FactorSet object, if False then will
 return a new FactorSet object.

 Returns

 If inplace = False, will return a new FactorSet Object which is division of
 given factors.

 Examples

 >>> from pgmpy.factors import FactorSet
 >>> from pgmpy.factors import DiscreteFactor
 >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
 >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
 >>> factor_set1 = FactorSet(phi1, phi2)
 >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8))
 >>> phi4 = DiscreteFactor(['x5', 'x7', 'x8'], [2, 2, 2], range(8))
 >>> factor_set2 = FactorSet(phi3, phi4)
 >>> factor_set3 = factor_set2.divide(factor_set1)
 >>> print(factor_set3)
 set([<DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b5ba10>,
 <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b650>,
 <DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b5b050>,
 <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e32b5b8d0>])
 """
 factor_set = self if inplace else self.copy()
 factor_set1 = factorset.copy()

 factor_set.add_factors(*[phi.identity_factor() / phi for phi in factor_set1.factors])

 if not inplace:
 return factor_set

[docs] def marginalize(self, variables, inplace=True):
 """
 Marginalizes the factors present in the factor sets with respect to the given variables.

 Parameters

 variables: list, array-like
 List of the variables to be marginalized.

 inplace: boolean (Default value True)
 If inplace=True it will modify the factor set itself, would create a new factor set

 Returns

 If inplace = False, will return a new marginalized FactorSet object.

 Examples

 >>> from pgmpy.factors import FactorSet
 >>> from pgmpy.factors import DiscreteFactor
 >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
 >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
 >>> factor_set1 = FactorSet(phi1, phi2)
 >>> factor_set1.marginalize('x1')
 >>> print(factor_set1)
 set([<DiscreteFactor representing phi(x2:3, x3:2) at 0x7f8e32b4cc10>,
 <DiscreteFactor representing phi(x3:2, x4:2) at 0x7f8e32b4cf90>])
 """
 if isinstance(variables, six.string_types):
 raise TypeError('Expected list or array-like type got type str')

 factor_set = self if inplace else self.copy()

 factors_to_be_marginalized = set(filter(lambda x: set(x.scope()).intersection(variables),
 factor_set.factors))

 for factor in factors_to_be_marginalized:
 variables_to_be_marginalized = list(set(factor.scope()).intersection(variables))
 if inplace:
 factor.marginalize(variables_to_be_marginalized, inplace=True)
 else:
 factor_set.remove_factors(factor)
 factor_set.add_factors(factor.marginalize(variables_to_be_marginalized, inplace=False))

 if not inplace:
 return factor_set

 def __mul__(self, other):
 return self.product(other)

 def __truediv__(self, other):
 return self.divide(other)

 def __str__(self):
 return self.factors.__str__()

[docs] def copy(self):
 """
 Create a copy of factor set.

 Examples

 >>> from pgmpy.factors import FactorSet
 >>> from pgmpy.factors import DiscreteFactor
 >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
 >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
 >>> factor_set = FactorSet(phi1, phi2)
 >>> factor_set
 <pgmpy.factors.FactorSet.FactorSet at 0x7fa68f390320>
 >>> factor_set_copy = factor_set.copy()
 >>> factor_set_copy
 <pgmpy.factors.FactorSet.FactorSet at 0x7f91a0031160>
 """
 # No need to have copies of factors as argument because __init__ method creates copies.
 return FactorSet(*self.factors)

def factorset_product(*factorsets_list):
 r"""
 Base method used for product of factor sets.

 Suppose :math:`\vec\phi_1` and :math:`\vec\phi_2` are two factor sets then their product is a another factors set
 :math:`\vec\phi_3 = \vec\phi_1 \cup \vec\phi_2`.

 Parameters

 factorsets_list: FactorSet1, FactorSet2, ..., FactorSetn
 All the factor sets to be multiplied

 Returns

 Product of factorset in factorsets_list

 Examples

 >>> from pgmpy.factors import FactorSet
 >>> from pgmpy.factors import DiscreteFactor
 >>> from pgmpy.factors import factorset_product
 >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
 >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
 >>> factor_set1 = FactorSet(phi1, phi2)
 >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8))
 >>> phi4 = DiscreteFactor(['x5', 'x7', 'x8'], [2, 2, 2], range(8))
 >>> factor_set2 = FactorSet(phi3, phi4)
 >>> factor_set3 = factorset_product(factor_set1, factor_set2)
 >>> print(factor_set3)
 set([<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7fb3a1933e90>,
 <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7fb3a1933f10>,
 <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7fb3a1933f90>,
 <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7fb3a1933e10>])

 """
 if not all(isinstance(factorset, FactorSet) for factorset in factorsets_list):
 raise TypeError("Input parameters must be FactorSet instances")
 return reduce(lambda x, y: x.product(y, inplace=False), factorsets_list)

def factorset_divide(factorset1, factorset2):
 r"""
 Base method for dividing two factor sets.

 Division of two factor sets :math:`\frac{\vec\phi_1}{\vec\phi_2}` basically translates to union of all the factors
 present in :math:`\vec\phi_2` and :math:`\frac{1}{\phi_i}` of all the factors present in :math:`\vec\phi_2`.

 Parameters

 factorset1: FactorSet
 The dividend

 factorset2: FactorSet
 The divisor

 Returns

 The division of factorset1 and factorset2

 Examples

 >>> from pgmpy.factors import FactorSet
 >>> from pgmpy.factors import DiscreteFactor
 >>> from pgmpy.factors import factorset_divide
 >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12))
 >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8))
 >>> factor_set1 = FactorSet(phi1, phi2)
 >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8))
 >>> phi4 = DiscreteFactor(['x5', 'x7', 'x8'], [2, 2, 2], range(8))
 >>> factor_set2 = FactorSet(phi3, phi4)
 >>> factor_set3 = factorset_divide(factor_set2, factor_set1)
 >>> print(factor_set3)
 set([<DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f119ad78f90>,
 <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f119ad78e50>,
 <DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f119ad78ed0>,
 <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f119ad78e90>])

 """
 if not isinstance(factorset1, FactorSet) or not isinstance(factorset2, FactorSet):
 raise TypeError("factorset1 and factorset2 must be FactorSet instances")
 return factorset1.divide(factorset2, inplace=False)

 © Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

_modules/pgmpy/independencies/Independencies.html

 Navigation

 		
 index

 		
 modules |

 		
 modules |

 		pgmpy 0.1.0 documentation »

 		Module code »

 Source code for pgmpy.independencies.Independencies

-*- coding: utf-8 -*-

import itertools
from pgmpy.extern import six

[docs]class Independencies(object):
 """
 Base class for independencies.
 independencies class represents a set of Conditional Independence
 assertions (eg: "X is independent of Y given Z" where X, Y and Z
 are random variables) or Independence assertions (eg: "X is
 independent of Y" where X and Y are random variables).
 Initialize the independencies Class with Conditional Independence
 assertions or Independence assertions.

 Parameters

 assertions: Lists or Tuples
 Each assertion is a list or tuple of the form: [event1,
 event2 and event3]
 eg: assertion ['X', 'Y', 'Z'] would be X is independent
 of Y given Z.

 Examples

 Creating an independencies object with one independence assertion:
 Random Variable X is independent of Y

 >>> independencies = independencies(['X', 'Y'])

 Creating an independencies object with three conditional
 independence assertions:
 First assertion is Random Variable X is independent of Y given Z.

 >>> independencies = independencies(['X', 'Y', 'Z'],
 ... ['a', ['b', 'c'], 'd'],
 ... ['l', ['m', 'n'], 'o'])

 Public Methods

 add_assertions
 get_assertions
 get_factorized_product
 closure
 entails
 is_equivalent
 """
 def __init__(self, *assertions):
 self.independencies = []
 self.add_assertions(*assertions)

 def __str__(self):
 string = '\n'.join([str(assertion) for assertion in self.independencies])
 return string

 __repr__ = __str__

 def __eq__(self, other):
 if not isinstance(other, Independencies):
 return False
 return (all(independency in other.get_assertions() for independency in self.get_assertions()) and
 all(independency in self.get_assertions() for independency in other.get_assertions()))

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def contains(self, assertion):
 """
 Returns `True` if `assertion` is contained in this `Independencies`-object,
 otherwise `False`.

 Parameters

 assertion: IndependenceAssertion()-object

 Examples

 >>> from pgmpy.independencies import Independencies, IndependenceAssertion
 >>> ind = Independencies(['A', 'B', ['C', 'D']])
 >>> IndependenceAssertion('A', 'B', ['C', 'D']) in ind
 True
 >>> # does not depend on variable order:
 >>> IndependenceAssertion('B', 'A', ['D', 'C']) in ind
 True
 >>> # but does not check entailment:
 >>> IndependenceAssertion('X', 'Y', 'Z') in Independencies(['X', 'Y'])
 False
 """
 if not isinstance(assertion, IndependenceAssertion):
 raise TypeError("' in <Independencies()>' requires IndependenceAssertion" +
 " as left operand, not {0}".format(type(assertion)))

 return assertion in self.get_assertions()

 __contains__ = contains

[docs] def get_assertions(self):
 """
 Returns the independencies object which is a set of IndependenceAssertion objects.

 Examples

 >>> from pgmpy.independencies import Independencies
 >>> independencies = Independencies(['X', 'Y', 'Z'])
 >>> independencies.get_assertions()
 """
 return self.independencies

[docs] def add_assertions(self, *assertions):
 """
 Adds assertions to independencies.

 Parameters

 assertions: Lists or Tuples
 Each assertion is a list or tuple of variable, independent_of and given.

 Examples

 >>> from pgmpy.independencies import Independencies
 >>> independencies = Independencies()
 >>> independencies.add_assertions(['X', 'Y', 'Z'])
 >>> independencies.add_assertions(['a', ['b', 'c'], 'd'])
 """
 for assertion in assertions:
 if isinstance(assertion, IndependenceAssertion):
 self.independencies.append(assertion)
 else:
 try:
 self.independencies.append(IndependenceAssertion(assertion[0], assertion[1], assertion[2]))
 except IndexError:
 self.independencies.append(IndependenceAssertion(assertion[0], assertion[1]))

[docs] def closure(self):
 """
 Returns a new `Independencies()`-object that additionally contains those `IndependenceAssertions`
 that are implied by the the current independencies (using with the `semi-graphoid axioms
 <https://en.wikipedia.org/w/index.php?title=Conditional_independence&oldid=708760689#Rules_of_conditional_independence>`_;
 see (Pearl, 1989, `Conditional Independence and its representations
 <http://www.cs.technion.ac.il/~dang/journal_papers/pearl1989conditional.pdf>`_)).

 Might be very slow if more than six variables are involved.

 Examples

 >>> from pgmpy.independencies import Independencies
 >>> ind1 = Independencies(('A', ['B', 'C'], 'D'))
 >>> ind1.closure()
 (A _|_ B | D, C)
 (A _|_ B, C | D)
 (A _|_ B | D)
 (A _|_ C | D, B)
 (A _|_ C | D)

 >>> ind2 = Independencies(('W', ['X', 'Y', 'Z']))
 >>> ind2.closure()
 (W _|_ Y)
 (W _|_ Y | X)
 (W _|_ Z | Y)
 (W _|_ Z, X, Y)
 (W _|_ Z)
 (W _|_ Z, X)
 (W _|_ X, Y)
 (W _|_ Z | X)
 (W _|_ Z, Y | X)
 [..]
 """

 def single_var(var):
 "Checks if var represents a single variable"
 if not hasattr(var, '__iter__'):
 return True
 else:
 return len(var) == 1

 def sg0(ind):
 "Symmetry rule: 'X ⟂ Y | Z' -> 'Y ⟂ X | Z'"
 return IndependenceAssertion(ind.event2, ind.event1, ind.event3)

 # since X⟂Y|Z == Y⟂X|Z in pgmpy, sg0 (symmetry) is not used as an axiom/rule.
 # instead we use a decorator for the other axioms to apply them on both sides
 def apply_left_and_right(func):
 def symmetric_func(*args):
 if len(args) == 1:
 return func(args[0]) + func(sg0(args[0]))
 if len(args) == 2:
 return (func(*args) + func(args[0], sg0(args[1])) +
 func(sg0(args[0]), args[1]) + func(sg0(args[0]), sg0(args[1])))
 return symmetric_func

 @apply_left_and_right
 def sg1(ind):
 "Decomposition rule: 'X ⟂ Y,W | Z' -> 'X ⟂ Y | Z', 'X ⟂ W | Z'"
 if single_var(ind.event2):
 return []
 else:
 return [IndependenceAssertion(ind.event1, ind.event2 - {elem}, ind.event3)
 for elem in ind.event2]

 @apply_left_and_right
 def sg2(ind):
 "Weak Union rule: 'X ⟂ Y,W | Z' -> 'X ⟂ Y | W,Z', 'X ⟂ W | Y,Z' "
 if single_var(ind.event2):
 return []
 else:
 return [IndependenceAssertion(ind.event1, ind.event2 - {elem}, {elem} | ind.event3)
 for elem in ind.event2]

 @apply_left_and_right
 def sg3(ind1, ind2):
 "Contraction rule: 'X ⟂ W | Y,Z' & 'X ⟂ Y | Z' -> 'X ⟂ W,Y | Z'"
 if ind1.event1 != ind2.event1:
 return []

 Y = ind2.event2
 Z = ind2.event3
 Y_Z = ind1.event3
 if Y < Y_Z and Z < Y_Z and Y.isdisjoint(Z):
 return [IndependenceAssertion(ind1.event1, ind1.event2 | Y, Z)]
 else:
 return []

 # apply semi-graphoid axioms as long as new independencies are found.
 all_independencies = set()
 new_inds = set(self.independencies)

 while new_inds:
 new_pairs = (set(itertools.permutations(new_inds, 2)) |
 set(itertools.product(new_inds, all_independencies)) |
 set(itertools.product(all_independencies, new_inds)))

 all_independencies |= new_inds
 new_inds = set(sum([sg1(ind) for ind in new_inds] +
 [sg2(ind) for ind in new_inds] +
 [sg3(*inds) for inds in new_pairs], []))
 new_inds -= all_independencies

 return Independencies(*list(all_independencies))

[docs] def entails(self, entailed_independencies):
 """
 Returns `True` if the `entailed_independencies` are implied by this `Independencies`-object, otherwise `False`.
 Entailment is checked using the semi-graphoid axioms.

 Might be very slow if more than six variables are involved.

 Parameters

 entailed_independencies: Independencies()-object

 Examples

 >>> from pgmpy.independencies import Independencies
 >>> ind1 = Independencies([['A', 'B'], ['C', 'D'], 'E'])
 >>> ind2 = Independencies(['A', 'C', 'E'])
 >>> ind1.entails(ind2)
 True
 >>> ind2.entails(ind1)
 False
 """
 if not isinstance(entailed_independencies, Independencies):
 return False

 implications = self.closure().get_assertions()
 return all(ind in implications for ind in entailed_independencies.get_assertions())

[docs] def is_equivalent(self, other):
 """
 Returns True if the two Independencies-objects are equivalent, otherwise False.
 (i.e. any Bayesian Network that satisfies the one set
 of conditional independencies also satisfies the other).

 Might be very slow if more than six variables are involved.

 Parameters

 other: Independencies()-object

 Examples

 >>> from pgmpy.independencies import Independencies
 >>> ind1 = Independencies(['X', ['Y', 'W'], 'Z'])
 >>> ind2 = Independencies(['X', 'Y', 'Z'], ['X', 'W', 'Z'])
 >>> ind3 = Independencies(['X', 'Y', 'Z'], ['X', 'W', 'Z'], ['X', 'Y', ['W','Z']])
 >>> ind1.is_equivalent(ind2)
 False
 >>> ind1.is_equivalent(ind3)
 True
 """
 return self.entails(other) and other.entails(self)

 # TODO: write reduce function.
[docs] def reduce(self):
 """
 Add function to remove duplicate Independence Assertions
 """
 pass

[docs] def latex_string(self):
 """
 Returns a list of string.
 Each string represents the IndependenceAssertion in latex.
 """
 return [assertion.latex_string() for assertion in self.get_assertions()]

 def get_factorized_product(self, random_variables=None, latex=False):
 # TODO: Write this whole function
 #
 # The problem right now is that the factorized product for all
 # P(A, B, C), P(B, A, C) etc should be same but on solving normally
 # we get different results which have to be simplified to a simpler
 # form. How to do that ??? and also how to decide which is the most
 # simplified form???
 #
 pass

[docs]class IndependenceAssertion(object):
 """
 Represents Conditional Independence or Independence assertion.

 Each assertion has 3 attributes: event1, event2, event3.
 The attributes for

 .. math:: U \perp X, Y | Z

 is read as: Random Variable U is independent of X and Y given Z would be:

 event1 = {U}

 event2 = {X, Y}

 event3 = {Z}

 Parameters

 event1: String or List of strings
 Random Variable which is independent.

 event2: String or list of strings.
 Random Variables from which event1 is independent

 event3: String or list of strings.
 Random Variables given which event1 is independent of event2.

 Examples

 >>> from pgmpy.independencies import IndependenceAssertion
 >>> assertion = IndependenceAssertion('U', 'X')
 >>> assertion = IndependenceAssertion('U', ['X', 'Y'])
 >>> assertion = IndependenceAssertion('U', ['X', 'Y'], 'Z')
 >>> assertion = IndependenceAssertion(['U', 'V'], ['X', 'Y'], ['Z', 'A'])

 Public Methods

 get_assertion
 """
 def __init__(self, event1=[], event2=[], event3=[]):
 """
 Initialize an IndependenceAssertion object with event1, event2 and event3 attributes.

 event2
 ^
 event1 / event3
 ^ / ^
 | / |
 (U || X, Y | Z) read as Random variable U is independent of X and Y given Z.

 """
 if event1 and not event2:
 raise ValueError('event2 needs to be specified')
 if any([event2, event3]) and not event1:
 raise ValueError('event1 needs to be specified')
 if event3 and not all([event1, event2]):
 raise ValueError('event1' if not event1 else 'event2' + ' needs to be specified')

 self.event1 = frozenset(self._return_list_if_str(event1))
 self.event2 = frozenset(self._return_list_if_str(event2))
 self.event3 = frozenset(self._return_list_if_str(event3))

 def __str__(self):
 if self.event3:
 return('({event1} _|_ {event2} | {event3})'.format(event1=', '.join(self.event1),
 event2=', '.join(self.event2),
 event3=', '.join(self.event3)))
 else:
 return('({event1} _|_ {event2})'.format(event1=', '.join(self.event1),
 event2=', '.join(self.event2)))

 __repr__ = __str__

 def __eq__(self, other):
 if not isinstance(other, IndependenceAssertion):
 return False
 return ((self.event1, self.event2, self.event3) == other.get_assertion() or
 (self.event2, self.event1, self.event3) == other.get_assertion())

 def __ne__(self, other):
 return not self.__eq__(other)

 def __hash__(self):
 return hash((frozenset((self.event1, self.event2)), self.event3))

 @staticmethod
 def _return_list_if_str(event):
 """
 If variable is a string returns a list containing variable.
 Else returns variable itself.
 """
 if isinstance(event, six.string_types):
 return [event]
 else:
 return event

[docs] def get_assertion(self):
 """
 Returns a tuple of the attributes: variable, independent_of, given.

 Examples

 >>> from pgmpy.independencies import IndependenceAssertion
 >>> asser = IndependenceAssertion('X', 'Y', 'Z')
 >>> asser.get_assertion()
 """
 return self.event1, self.event2, self.event3

 def latex_string(self):
 return ('%s \perp %s \mid %s' % (', '.join(self.event1), ', '.join(self.event2),
 ', '.join(self.event3)))

 © Copyright 2014, pgmpy Developers (MIT License).
 Created using Sphinx 1.3.5.

_images/math/50e6d1f7d9ff95e3bc9d648833a36a8bd8f0d2f1.png

